Problems

Fluids - 2

This problem will exploit dimensional analysis to study the flow of a viscous fluid between two parallel plates. Consider the geometry depicted below.

Between the two plates, a two-dimensional incompressible flow occurs in the x-y plane. Let \(u \) and \(v \) refer to the velocity component in the \(x \) and \(y \) direction, respectively. The density, pressure, and kinematic viscosity are \(\rho \), \(p \), and \(\nu \) respectively.

1. **[30 points]** Define the characteristic flow velocities in the “x” and “y” directions as \(U \) and \(V \), respectively. Through extensive experimentation it has been discovered that \(V \) is independent of both the pressure and the fluid properties. Using dimensional analysis, define a set of \(\Pi \) groups that describe \(V \).

2. **[40 points]** Under the assumptions of Problem 1, the governing equation for the fluid velocity is,

\[
\frac{\partial^2 u}{\partial y^2} = \Psi
\]

\[
\frac{\partial^2 v}{\partial y^2} = 0
\]

where \(\Psi \) is a constant related to the pressure gradient. Solve for the velocities subject to the boundary conditions:

\[
u(x, 0) = 0
\]

\[
u(x, h) = U
\]

\[
u(x, 0) = 0
\]

\[
u(x, h) = 0
\]

3. **[30 points]** Consider the case, \(U = 0 \), and denote the areal flow (volumetric flow rate per unit depth) between the plates as \(Q \). Find an expression for \(Q \) in terms of \(\Psi \) and the geometric variables \(h \), and \(L \).