Problems

Consider the following unity negative feedback system

\[K=1, \quad G(s)=\frac{9}{s(s+a)} \]

1) Find the closed-loop transfer function \(G_{CL}(s) = \frac{Y(s)}{U(s)} \) \((8 \text{ points}) \)

2) Calculate the undamped natural frequency \((\omega_n) \) of the closed-loop system. \((8 \text{ points}) \)

3) Find a value for “\(a \)” such that the closed-loop system damping ratio \((\zeta) \) is 20%. \((8 \text{ points}) \)

4) Find the 2% settling time and the percent overshoot of the closed-loop system response due to a step input \((8 \text{ points}) \)

5) Plot the root locus of the system by varying the gain \(K \). \((8 \text{ points}) \)

6) On the root locus, mark the poles that correspond to critical damping. \((7 \text{ points}) \)

7) What is the value of gain \(K \) to achieve the critical damping? \((8 \text{ points}) \)

Let us consider a new plant \(G(s) \), the Bode plot is in the next page.

8) Which one of the following transfer functions represent \(G(s) \), why? \((8 \text{ points}) \)

 (a) \(G(s)=\frac{s}{(s+a)} \), (b) \(G(s)=\frac{1}{s(s+a)} \), (c) \(G(s)=\frac{s}{s^2+as+b} \), (d) \(G(s)=\frac{1}{s^2+as+b} \)

9) From the Bode plot, assuming that \(G(s) \) is the open loop transfer function, what is the gain margin? \((7 \text{ points}) \)

10) Again, assuming that \(G(s) \) is the open loop transfer function, what is the phase margin? \((7 \text{ points}) \)

11) If a unity negative feedback loop were closed around \(G(s) \), would the system be stable at gain \(K=1? \) \((7 \text{ points}) \)

12) On a separate figure, sketch the Nyquist plot of \(G(s) \) using data from the Bode plot. \((8 \text{ points}) \)

13) Clearly mark the gain margin and phase margin on the Nyquist plot. \((8 \text{ points}) \)
Problems