Part a (50 points)

1. **(10 points)** Let \(g(x) = ax^2 + bx + c \) what is \(\frac{d g(x)}{dx} \)?

2. **(20 points)** Let \(F(y) = \frac{1}{\sqrt{y}} \) what is \(\frac{d F(y)}{dy} \)?

3. **(20 points)** Substituting \(g(x) \) into \(y \), what is \(\frac{d F(x)}{dx} \)?

Part b (50 points)

For two point bodies \(i \) and \(j \), let \(\mathbf{r}_i \) and \(\mathbf{r}_j \) be position coordinate vectors in 3D:

\[
\mathbf{r}_i = \begin{bmatrix} r_{ix} \\ r_{iy} \\ r_{iz} \end{bmatrix} \quad \mathbf{r}_j = \begin{bmatrix} r_{jx} \\ r_{jy} \\ r_{jz} \end{bmatrix}
\] (2)

The Euclidean norm between the bodies is given by:

\[
\| \mathbf{r}_i - \mathbf{r}_j \| = \sqrt{(r_{ix} - r_{jx})^2 + (r_{iy} - r_{jy})^2 + (r_{iz} - r_{jz})^2}
\] (3)

1. **(20 points)** Expand the Euclidean norm into the form \(\sqrt{ax^2 + bx + c} \) and substitute \(r_{ix} \) for \(x \). What are \(a; b; c \) (5 points each) in terms of the remaining elements of \(\mathbf{r}_i \) and \(\mathbf{r}_j \)?

2. **(30 points)** Let \(F(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{\| \mathbf{r}_i - \mathbf{r}_j \|} \). Show that:

\[
\frac{dF(\mathbf{r}_i, \mathbf{r}_j)}{dr_{ix}} = -\frac{(r_{ix} - r_{jx})}{\| \mathbf{r}_i - \mathbf{r}_j \|^3}
\] (4)