The following differential equation is a familiar sight to any undergraduate engineering student:

\[m\ddot{y} + ky = 0 \]

where \(k \) is any non-zero constant.

The well known solution, often introduced as “and a good guess to solve this equation is…”

\[y(t) = A\sin(\omega t) + B\cos(\omega t) \]

where \(\omega = \sqrt{\frac{k}{m}} \).

The question is then: If you’re not a great guesser, how do you find the solution to (1)?

Well, let’s take a crack at a series solution – i.e. represent the solution as a power series with correctly chosen coefficients.

Part 1 (10 points)

Start with the power series:

\[y(x) = \sum_{n=0}^{\infty} a_n x^n \]

- Write down the appropriate derivatives of \(y \) and plug them back into the equation.
- Simplify the resulting equation keeping ONLY non-zero terms.

Part 2 (20 Points)

Take the resulting equation from Part 1 and make sure that all of the terms are under one series (hint: there are two parts to this step – get the indices, \(n \), of all summations to start at the same value and second, get the powers of \(x \) to be the same using a nifty substitution like \(m = n \pm a \) where \(a \) is the integer in YOUR equation.

Part 3 (30 Points)

You now should have one summation of some number of terms = 0. In order for this to be true, every term must be zero, so you can cast away the summation and get a thing called the
recurrence formula – that is the higher order coefficients as a function of the lower order coefficients.

- Write this relationship here
- Write the first 5 higher order coefficients a_2-a_5 in terms of a_0 ad a_1:

Part 4 (20 Points)

Now that you have all of the coefficients a_n, you can write down the solution as a series solution using Equation (1). Write the solution here....

Part 5 (20 Points)

Ok – so that was a lot of work, how does that give us the solution, Equation (2), that was a “good guess”?

Hint:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$